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I. ВВЕДЕНИЕ

Из трех основных кислот, содержащих один атом фосфора в молеку-
ле,— фосфорной, фосфористой и фосфорноватистой— последняя найме-
нее изучена и наиболее трудно с хорошим выходом синтезируется, мало
исследованы и ее соли (гипофосфиты).

Гипофосфиты привлекают большое внимание исследователей не толь-
ко из-за их широкого применения как восстановителей, но и в связи с
возможностью их использования для получения различных полимерных
материалов.

Ниже представлены сведения о синтезе фосфорноватистой кислоты
и гипофосфитов различных металлов, их строении и свойствах, условиях
комплексообразования в водных и неводных средах.

II. ФОСФОРНОВАТИСТАЯ КИСЛОТА: ПОЛУЧЕНИЕ, СВОЙСТВА

Чистая фосфорноватистая кислота Η (О2РН2) представляет собой бе-
лые кристаллы, плавящиеся при 26,5°; разлагается при температуре выше
50°. Теплота плавления кислоты составляет 2,4 ккал1моль1~к, теплота
растворения кристаллической кислоты в воде около —0,18 ккал[моль.

Интересным лабораторным методом получения Н(О2РН2) является
окисление фосфина РН3 в водной суспензии иода5. Фосфин, полученный
при взаимодействии фосфида кальция и разбавленной соляной кислоты,
пропускают в колбу, содержащую перемешиваемую суспензию иода, до
обесцвечивания раствора. При пониженном давлении (40 мм рт. ст.)
удаляют йодистый водород и воду, после чего остается чистая Н(О 2РН 2).
Последняя образуется также при медленном окислении белого фосфора
в присутствии воды, однако выход ее незначителен. При окислении бело-
го фосфора пропусканием над ним влажного воздуха лишь 10—12% взя-
того фосфора превращается в Н(О 2 РН 2 ) в .

Фосфорноватистая кислота получается при разложении водой фос-
фидов щелочноземельных металлов. Можно получить кислоту, если обра-
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ботать водный раствор гипофосфита кальция эквивалентным количест-
вом H2SO4. Описана методика7 очистки фосфорноватистой кислоты пере-
кристаллизацией имеющейся в продаже 50%-ной Н(О 2 РН 2 ). Чистую
кислоту можно получить превращением технического гипофосфита нат-
рия в фосфорноватистую кислоту путем ионного обмена8.

Фосфорноватистая кислота является сильной одноосновной кислотой.
Константа диссоциации, по данным Колытофа9"1 3, составляет 8,0· Ю"2.
Одноосновность фосфорнова-
тистой кислоты свидетельству-
ет о том, что в данной структу-
ре фосфор имеет координаци-
онное число четыре.

При изучении кинетики
окисления фосфорноватистой
кислоты галогенами (бромом и
хлором — Гриффит и Мак-
Кьюэн; иодом — Гриффит,
Мак-Кьюэн и Тейлор) 14~19 бы-
ло найдено, что стадией, опре-
деляющей скорость окисления,
является превращение неак-

4 8 IZ 16 ZO ZV Z8 3Z 36
0,1 N основание, мл

Рис. 1. Кривые рН титрования: А — фос-
форноватистой кислоты; 5 — фосфористой
кислоты; В—пирофосфористой кислоты;
Г — хлористоводородной кислоты. Значения
рН установлены по стандартным 'буферным

растворам

тивной формы фосфорноватис-
той КИСЛОТЫ (НзРОг): В ЭКТИВ-
ную форму (Н3РО2)ц. Выска-
зано предположение, что фор-
ма (H3PO2)i таутомерная, в ко-
торой два атома водорода при-
соединены 1к фосфору, а (Н3РО2)„ содержит две гидроксильные группы
при фосфоре. Следует отметить, что в одинаковых условиях реакция с
хлором протекает быстрее реакции с бромом, а реакция с иодом имеет
наименьшую скорость.

ТАБЛИЦА I
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На рис. 1 представлены кривые титрования фосфорноватистой кигло-
ты и некоторых других низших кислот фосфора. Константа диссоциации
Н(О2РН2) сопоставлена с /С„„с. других кислот, и показано, что эти вели-

20 21

чины соответствуют вычисленным · .
В табл. 1 приведены константы диссоциации ряда кислот фосфора.
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HI. ГИПОФОСФИТ-ИОН, ЕГО СТРУКТУРА И СВОЙСТВА

Структура гипофосфит-иона изучена рентгенографическим методом
на гипофосфите аммония2 3·2 4. Этот анион имеет вид искаженного тетра-
эдра, два угла которого заняты атомами кислорода, а в двух других
находятся атомы водорода, причем фосфор расположен в центре тетра-
эдра. Показано, что расстояние Ρ—О составляет 1, 51 А, расстояние
Ρ—Η—1,5 А, углы О—Р—О и Η—Ρ—Η равны соответственно 120 и 92°.

Аналогично рентгенографическим методом изучали25·26 структуру
гексагидратов гипофосфитов магния, никеля и кобальта. Установлено,
что в магниевой соли анион Н2РО~ имеет структуру, близкую к тетра-
эдрической с расстоянием Ρ—О 1,52 А и углом О—Ρ—О 109°. Найден-
ные расстояния Ρ—О соответствуют приблизительно О.бп-связи на одну
σ-связь — величина, эквивалентная 1,2п-связи на один атом фосфора.

-80-V0-Z0 О Z0 40 141 ±
Магнитное попе! ч. на млн

Рис. 2. Спектр ядерного магнитного резонанса фосфора
в гипофосфит- и фосфит-анионах и триметилфосфите.
А — фосфорноватистая кислота; 5—фосфористая кис-

лота; В — триметилфосфит

Спектр ЯМР 2 7 - 3 0 фосфора в растворах гипофосфитов показывает
спин-спиновое расщепление 1—2—1 с расстоянием между отдельными
резонансными пиками 0,33 гаусс, что показано на рис. 2. Аналогично,
спектр водорода имеет два пика, соответствующие спин-спиновому рас-
щеплению 1—1. Это значит, что два атома водорода (ядерный спин-1/2)
ковалентно связаны с атомом фосфора (ядерный спин-1/2), поэтому, если
и происходит их взаимный обмен или обмен с водой, то эти процессы
протекают довольно медленно (период полуобмена порядка нескольких
минут). В соответствии с приведенными данными, приблизительно 95%
или более свободной кислоты или ее солей находятся в форме, у которой
с фосфором непосредственно связано четыре атома. ν

Гипофосфит-ион обладает спектром с тремя пиками, относительная
интенсивность которых 1 :2 :1 . Фосфит-анион имеет в спектре'два равно-
великих пика; триметилфосфит обнаруживает девять пиков с теоретиче-
скими относительными интенсивностями 1 : 9 : 36 : 84 : 126 : 84 : 36 : 9 : 1.
Мультиплетная структура спектров ЯМР обусловлена непрямым спин-
спиновым расщеплением ковалентно-связанных атомов водорода.

Кроме того, были изучены спектры комбинационного рассеяния фос-
форноватистой кислоты и некоторых ее солей 31~37. Эти исследования по-
казали, что гипофосфит-ион имеет С2в-симметрию, которую следует при-
писать тетраэдрическому аниону Н2РО~.

Несмотря на то, что кислота и ее соли со щелочными и щелочнозе-
мельными металлами имеют четырехкоординированный фосфор, из-за
равновесия таутомерных форм можно сдвинуть равновесие в сторону
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формы с трехкоординированным фосфором. Это осуществимо в условиях,
когда акцептор электронов (но не ион водорода) может принять участие
в использовании свободной пары электронов трехкоординированного
атома фосфора. Возможно, что подобные условия имеются в продуктах
присоединения или двойных солях пшофосфита двухвалентного олова с
бромидом или иодидом двухвалентного олова38.

Обстоятельно изучена кинетика изотопного обмена гипофосфитов с
водой и гипофосфитов с другими солями кислородных кислот фосфора.
В ранних исследованияхзэ·40 указывали, что два атома водорода, непо-
средственно присоединенные к атому фосфора гипофосфит-аниона, неспо-
собны к обмену с атомами водорода воды. Однако в результате послед-
них исследований41·42 установлено, что подобный процесс протекает,
хотя и медленно, но с измеримой скоростью. Скорость, с которой замеща-
ется один атом водорода гипофосфит-аниона (связанный непосредствен-
но с фосфором), выражается следующим уравнением, в котором число-
вые константы отнесены к 30,0°:

R -3,33 [Н+1 · [Η2ΡΟΐ] +2,9 [Н3РО2]
2,

где R выражена в л/моль -час. Этот обмен, как полагают, определяется
описанным выше переходом таутомерной формы гипофосфит-иона в ион
с трехкоординированным фосфором.

Исследован'"1 также процесс обмена кислорода между гипофосфит-
ионом и водой, в которой он был растворен. Показано, что период полу-
обмена кислорода в случае кислоты при 40 и 100° составляет соответ-
ственно 70 час и <0,2 час. Для натриевой соли скорость обмена кисло-
рода настолько мала, что даже при 100° его нельзя обнаружить. Эти дан-
ные следует сопоставить с результатами, полученными теми же авторами
при изучении обмена атомов водорода41·42. Для Н(О2РН2) при 25° пе-
риод.полуобмена водорода составляет 16 мин, а для Na(O2PH2) при 100°
это время равно 21 час. Возможно, что меньшая скорость кислородного
обмена для натриевой соли по сравнению с кислотой является следстви-
ем наличия водородной связи между ОН-группами кислоты и воды. Это
объяснение близко к предложенной Гротгусом теории электропровод-
ности 44, в соответствии с которой атомы водорода, присоединенные не-
посредственно к фосфору, образуют более слабые водородные связи с
водой, нежели атомы водорода ОН-группы.

Показано45"47, что атомы фосфора гипофосфит-иона не обмениваются
с фосфитами и фосфатами ни в кислых, ни в нейтральных растворах.
Интересно отметить, что обмен фосфором между фосфорноватистой и
фосфорной кислотами не протекает в присутствии иода или иодидов,
хотя реакция окисления фосфорноватистой кислоты в фосфористую кис-
лоту иодом могла бы обусловить обмен фосфора со скоростью, сравни-
мой со скоростью окислительно-восстановительной реакции. В случае
смесей меньяковистой и мышьяковой кислот иод способствует обмену
мышьяка со скоростью, которая может быть предсказана из кинетиче-
ских данных окислительно-восстановительной реакции.

Отсутствие обмена между фосфорноватистой и фосфористой кислота-
ми в присутствии иода объясняют, исходя из предположения, что процесс
складывается из двух стадий: медленного перехода неактивной формы
фосфорноватистой кислоты в активную форму и затем быстрого необра-
тимого окисления иодом активной формы кислоты. Таким образом, в
первой обратимой стадии обмен не может иметь места, а вторая (окис-
лительно-восстановительная) стадия не сопровождается обменом вслед-
ствие ее необратимости. По-видимому, активная форма фосфорноватис-
той кислоты является таутомерной структурой, основанной на трехкоор-

3 Успехи химии, № 12
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динированном фосфоре. Этот результат и данные по обмену водорода
между фосфорноватистои кислотой и водой находятся в соответствии с
выводами по окислению гипофосфитов, о чем будет сказано ниже.

Фосфорноватистая кислота и гипофосфиты окисляются легко. Кри-
сталлы фосфорноватистои кислоты при хранении на холоду устойчивы \
но, загрязненные, легко разлагаются при комнатной температуре. Про-
дуктами разложения, в основном, являются фосфин, фосфор, фосфорная
кислота и водород. Аналогично, при сильном нагревании гипофосфиты,
разлагаясь, .выделяют фосфин, красный фосфор, фосфиты, фосфаты и,
возможно, другие соединения. Подобное разложение, очевидно, являет-
ся, следствием самоокисления-восстановления.

Изучалась48 кинетика реакции гипофосфит-иона с гидроксил-ионом,
при которой образуется фосфит-ион и газообразный водород. Уравнение·
скорости реакции имеет вид:

— d [H2POI]/d t = К [Н2РОГ] [ОН']2·

Константа скорости К этой реакции равна приблизительно 3-10"4 мин'1

при 100°. Было высказано предположение, что свободный водород легче
выделяется из гидроксил-иона, чем из гипофосфит-иона 49.

Гипофосфиты также разлагаются в нейтральных растворах с умерен-
ной скоростью, выделяя водород, в присутствии платиновой черни, пал-
ладия и меди4 8·5 0"5 5. Эти металлы легко осаждаются в коллоидном со-
стоянии из растворов их солей под действием гипофосфита натрия. Обра-
зующийся коллоидно-диспергированный металл затем катализирует раз-
ложение гипофосфит-иона; при этом выделяется водород.

Изучение изотопного обмена показывает, что водород, выделяющий-
ся из нейтральных растворов гипофосфитов в присутствии металлических
катализаторов, состоит наполовину из водорода воды56. В таком случае·
каталитическое разложение гипофосфита должно соответствовать сле-
дующему химическому уравнению:

НО н + н

Η Η

—РО-^ НОРО + Н2

о- о-

Ряд исследований посвящен изучению окисления гипофосфитов при
помощи различных окисляющих агентов. Основным продуктом этих ре-
акций является фосфит. Скорость окисления гипофосфита натрия в ще-
лочной среде примерно в 3 раза больше, чем в нейтральной: для завер-
шения реакции окисления в первом случае требуется 60 мин, а во вто-
ром— 180—200 мин". Последующий процесс окисления фосфитов в фос-
фаты в кислом растворе протекает значительно медленнее. Изучено58

каталитическое действие свежеосажденного никеля на реакцию окисле-
ния гипофосфита натрия. Показано, что на степень окисления гипофос-
фита оказывает влияние температура, время окисления, кислотность
раствора и количество катализатора.

Как указывалось ранее, изучалась кинетика окисления фосфорнова-
тистои кислоты галогенами. Найдено, что превращение неактивной фор-
мы фосфорноватистои кислоты (H3PO2)i в активную форму ( H 3 P O 2 ) I I
определяет скорость окисления. Взаимодействие между активной фор-
мой (Н3РО2)ц и галогенами протекает при каждом столкновении. Вы-
числена константа равновесия между двумя формами фосфорноватистои
кислоты:



Фосфорноватистая кислота и ее солн 215 5

[(Н3РО2),] К,

Скорость взаимного превращения двух форм фосфорноватистой кислоты
оказалась прямо пропорциональной концентрации ионов водорода и
определяющей скорость окисления в кислом растворе.

Изучена кинетика окисления фосфорноватистой кислоты иодат-ио-
ном 5 9-6 1

; ряд работ выполнен также по изучению более медленных реак-
ций с броматами и хлоратами 62~63. Кинетика реакции Н3РО2 с иодат-
ионом близка к кинетике окисления гипофосфитов галогенами. Однако
имеется ряд усложняющих побочных реакций, например взаимодействие
иода с Н(О 2РН 2), реакция фосфористой кислоты с иодом и иодатом. Все
же и в этом случае скорость окисления определяется стадией превраще-
ния (H3PO2)i в (Н3РО2)ц. Это оказалось справедливым и при изучении
кинетики окисления гипофосфита солями двухвалентной меди 6''~67 и
двухвалентной ртути 68~70 при умеренных концентрациях окислителя в
кислой среде.

Была изучена кинетика реакции окисления фосфорноватистой кисло-
ты в кислой среде хромат-ионом ", ионом серебра 72, ионом F e m 73, арсе-
нат-ионом " при умеренных и больших концентрациях. Найдено, что тип
и концентрация окисляющего агента по существу не оказывают влияния
на скорость процесса, которая заметно увеличивается при возрастании
кислотности раствора. Это отражается уравнением

в котором величина К имеет порядок 0,24 л/моль-мин для всех изучен-
ных реакций.

Результаты всех кинетических исследований соответствуют утвержде-
нию, что активная форма кислоты присутствует в чрезвычайно малых
количествах и скорость перехода неактивной формы в активную, являясь
медленным процессом, определяет в легко реализуемых эксперименталь-
ных условиях скорость всей реакции.

Эти результаты согласуются с данными по ЯМР, которые показыва-
ют, что на 95% или более гипофосфит-ион присутствует в таутомерной
форме, основанной на четырехкоординированном фосфоре. В соответ-
ствии с уравнением (^4), фосфорноватистая кислота содержит лишь одну
триллионную часть НР(ОН) 2 в Н 2 Р(О)(ОН).

IV. ГИПОФОСФИТЫ ЩЕЛОЧНЫХ И ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ

В последнее время во многих странах гипофосфиты широко применя-
ются при химическом никелировании металлов". Ряд других отраслей
промышленности76 также заинтересован в применении гипофосфитов.
В связи с возросшей потребностью увеличилось и производство гипофос-
фитов. Так, в период 1955—1960 гг. в США77 производство гипофосфитов
и фосфорноватистой кислоты выросло со 100 000 до.1 000 000 фунтов эк-
вивалентного фосфора в год. В СССР в 1967 г. по сравнению с 1957 г.
производство гипофосфита натрия увеличилось в несколько десятков раз.

Одним из решающих факторов, от которого зависит уровень потреб-
ления гипофосфитов, является их стоимость. Существующая высокая
цена на гипофосфит в СССР, обусловливающая высокую стоимость хи-
мического никелирования78, связана, с одной стороны, с низким ( ~ 3 6 %
от загруженного фосфора) выходом гипофосфита в промышленном спо-
собе получения Na2HPO2 через Са(Н2РО2)2, а с другой стороны,— с
относительно небольшими масштабами производства. Низкий выход ги-

3*
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пофосфита при взаимодействии фосфора с гидроксильными ионами свя-
зан с тем, что загруженный фосфор расходуется не только на получение
гипофосфита, но и переходит в фосфит и в газовую фазу в основном виде
фосфина.

Описанные способы производства гипофосфитов 79~~85 не дают возмож-
ности судить о влиянии тех или иных факторов на их выход. Максималь-
ный выход гипофосфита 70%, указанный в швейцарском патенте86, ни-
чем не обоснован. Во многих патентах дается низкая температура син-
теза растворов, однако связь ее с выходом нигде не оговаривается.
Описан " способ производства гипофосфитов щелочных металлов в при-
сутствии водной суспензии нерастворимых фосфатов, фосфитов, сульфа-
тов, силикатов и оксалатов щелочноземельных металлов, а также окис-
лов А1, Mg, Si и различных сортов глин в качестве катализаторов. Эти
суспензии увеличивают поверхность контактов между реагирующими
веществами, что в свою очередь активирует реакцию. Смесь нагревают
до температуры выше температуры плавления фосфора. Получают высо-
кочистый продукт с выходом 90%, без избытка щелочного металла или
побочных продуктов.

Способ получения гипофосфитов реакцией взаимодействия белого
фосфора с гидроокисями щелочных и щелочноземельных металлов отно-
сится к классическим (он был описан уже в 1816 г.). Этот способ при-
меняется для промышленного производства гипофосфитов и в настоящее
время. В различных вариантах основная реакция фосфора с гидрооки-
сями описана в ряде работ 7 9 · 8 6 · 3 8" 1 0 8 . Выход продуктов реакции в лабо-
раторных условиях и при промышленном ее применении был очень низ-
ким. Возрастающий интерес к гипофосфитам проявился в патентовании
метода. На основе этих патентов были разработаны условия для полу-
чения гипофосфита натрия, которые обобщены в работе82.

Принятый у нас метод производства гипофосфита натрия состоит из
двух стадий. На первой стадии в результате взаимодействия желтого
фосфора с Са(ОН) 2 получается гипофосфит кальция. При этом проте-
кает реакция:

8Р +ЗСа (ОН)2 +6Н2О =ЗСа (Н2РО2)2 + 2РН3.

На второй стадии полученный гипофосфит кальция разлагают содой и
получают NaH 2 PO 2 :

Са (Н2РО2)2 + Na2CO3 =2NaH2PO2 + CaCO3.

Технологические показатели этого метода очень плохи. Степень ис-
пользования исходного фосфора составляет в лучшем случае 16—18%.
Расход извести равняется 4-кратному количеству от стехиометрического.
Скорость процесса синтеза гипофосфита кальция мала, концентрация
получавшихся растворов составляла 7—8 г/л, а расход пара на выпарку
таких растворов велик. Отходящие газы синтеза (РН3) не использова-
лись. В принятом методе самой важной стадией, определяющей малую
эффективность всего производственного цикла, является процесс синте-
за гипофосфита кальция.

В последнее время советскими учеными был разработан ряд усовер-
шенствований этого метода, приводящих к более высокому выходу и
ускорению процесса. Существующее представление о «вялости» реакции
между желтым фосфором и гидроокисью кальция в водной среде оказа-
лось неверным; увеличение удельной поверхности фосфора ускоряет про-
цесс синтеза в десятки раз. При температуре выше 90—93° чрезвычайно
увеличивается скорость реакции. Вблизи 100° процесс в условиях разви-
той удельной поверхности завершается в 2—3 минуты.
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В этих условиях можно получить растворы, содержащие 12—13%
гипофосфита кальция. Достижение в процессе синтеза больших скоро-
стей и высоких концентраций гипофосфита в растворах позволяет в
15 раз сократить расход пара на выпарку растворов и резко снизить
объем реакторов. Установлена возможность значительного сокращения
расхода гидроокиси кальция. Вместо 400%-ного избытка можно рабо-
тать -с избытком приблизительно в 25% по отношению к стехиометриче-
скому количеству. Применение закрытых реакторов-эмульгаторов позво-
ляет использовать получающийся в процессе синтеза РН3 сжиганием его
до Р2О5 с последующим получением фосфорной кислоты, что увеличивает
использование фосфора до 75—80%.

Оптимальными условиями ведения синтеза в реакторах-эмульгаторах
следует считать следующие: температура синтеза 90—93°, фосфор и из-
весть задаются в молярном отношении Ρ : СаО, равном 1:0,45, что со-
ставляет « 2 5 % избытка извести. Количество воды, вводимой в процесс
синтеза, берется из расчета получения 12—13%-ных растворов.

Моргунова и Авербух 109 детально изучили процесс синтеза гипофос-
фита натрия из: 1) желтого фосфора и едкого натра; 2) желтого фосфо-
ра, гидроокиси кальция и соды; 3) желтого фосфора, гидроокиси натрия
и гидроокиси кальция; 4) желтого фосфора, гидрата окиси бария и соды;
5) желтого фосфора, едкого натра и гидроокиси бария. В процессе изу-
чения они установили, что увеличение выхода гипофосфита натрия до
55—59% от загруженного фосфора обеспечивается получением раство-
ров гипофосфита натрия в одну стадию взаимодействием фосфора с гид-
роксильными ионами в присутствии как одних ионов Na+, так и ионов
Na+ и Са2+ вместе. При замене ионов Са2 + ионами Ва2+ выход уменьша-
ется. Суммарное количество вводимых в процесс гидроксильных ионов,
обеспечивающее полное использование загруженного фосфора, должно
быть не менее 1,0—0,9 Μ на один грамм-атом фосфора. Уменьшение со-
держания фосфита, образующегося в процессе синтеза, достигается за
счет удаления его в осадок в виде нерастворимого фосфита щелочнозе-
мельного металла. Количество щелочноземельного металла, требуемого
для осаждения фосфита, должно составлять 0,25—0,30 Μ на один грамм-
атом фосфора, что обусловлено количеством фосфита, образующегося в
процессе синтеза.

В процессе синтеза пшофосфита натрия при наличии гидроксильных
ионов, введенных в виде гидроокиси щелочноземельного металла, ион
Na+ можно вводить как за счет гидроокиси, так и .в виде углекислой соли.
При введении иона натрия в виде углекислой соли необходимое коли-
чество гидроксильных ионов должно вводиться за счет гидроокиси ще-
лочноземельного металла. Количество реагентов в загрузке должно обес-
печивать молярное отношение Ρ : Na+ : Са2+ (или Ва2+) : ОН", равное
1 : 0,50—0,60 : 0,25—0,30 : 0,90— 1,0.

V. К ВОПРОСУ О МЕХАНИЗМЕ СИНТЕЗА ГИПОФОСФИТОВ
В РАСТВОРЕ

О за:Висимости между составом газовой фазы и составом продуктов,
образующихся при синтезе гипофосфитов в растворе, существуют раз-
личные мнения 80.

Одни исследователи считают, что количество выделяющегося водо-
рода пропорционально количеству фосфита, образующегося при окис-
лении гипофосфита:

Р4 -"-ЗОН- +ЗН2О •-» ЗН2РО; + РН3; (1)
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Η,ΡΟ: + он- ̂  ΗΡΟ' (2)

другие указывают на образование водорода в количестве, пропорцио-
нальном количеству гипофосфита.

В работе81 приводятся реакции, которые, по мнению авторов, лучше
согласуются с практическими результатами:

Р4 +4ОН- +4Н2О -> 4Н2РО" +2Н2; (3)

Р4 +4ОН- +2Н2О -> 2НРО̂  " +2РН3. (4)

По реакции (3) и (4) образуются равные количества фосфита и фосфи-
на. Существуют и другие взгляды на пути образования фосфита и водо-
рода80, однако во всех случаях не исключается присутствие того и дру-
гого компонента в газовой смеси. По данным одной из работ82, при син-
тезе гипофосфита натрия, кроме вышеприведенных реакций, протекают
и другие реакции с образованием Н2 и дифосфина:

(5)ЗР4 + 8ОН--- 8Н2О -* 8Н2РО" + Р2Н4;

Н 2 РО; +2ОН- -, РО^~ +2Н 2 ;

β + 18РН3.

; +2
15Р 2 Н 4 —

(б)

(7)

Ван Везер в своей наиболее полной и поздней монографии по фос-
фору110 приводит те же реакции, что даны в3 1.

Советские исследователи1И довольно детально изучали механизм
синтеза гипофосфита в растворе. Их исследования показали, что при вза-
имодействии фосфора с гидроксильными ионами реакции образования
гипофосфита и фосфита протекают параллельно. Можно предположить,
что при этом может выделяться как водород, так и фосфин.

Моргунова и Авербух в своей работе111 приводят значения изобарно-
изотермических потенциалов некоторых реакций, рассчитанных по дан-
ным Латимера1 1 2 (табл. 2). Все приведенные в таблице реакции, за ис-
ключением последней, термодинамически вероятны. Для того, чтобы оце-
нить, какие реакции в действительности могут иметь место, авторами
был изучен состав газовой фазы при синтезе растворов гипофосфитов.

ТАБЛИЦА 2

Изобарно-изотермические потенциалы некоторых реакций
(данные Латимера112)

Номер
реакции

1

2

3

4

8

9

10

11

12
13
14

Реакции

р4 + зон- + зн 2о -»зн5

Н 2РО; + ОН- -* HPOf -

Р 4 + 4ОН- + 4Н2О -^ 4Н

Р 4 + 4ОН- + 2Н2О ·-> 2Н

РО 2 +

-н,
РО- +

POf +
Р4 + 4ОН- 4- 8Н2О -> 4HPOj~ +

Р 4 + 6К2О ~* ЗН3РО2 + РН3

Н2Р0.7 + 2ОН- -^ РО^~ + 2Н2

НРО|" + ЗОН- -» P O f 4-
ЗН3РО г -» РН 3 + ЗН3РО3

Н3РО г + Н2О -» Н3РО3 +
4Н3РО3 -> PH., + 3Η3ΡΟι

-2Н2О

н 2

РН 3

2Н2

2РН3

8Н2

Изобарно-изотермичес-
кие потенциалы, кдж.

—336,0

— 142,8

-472,2

-485,2

— 722,8

— 126,4

-199,5

-217,1

-125,5
—96,6
+3,8
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л з

(1)

88,3

80,6
—

(4)

35,7

(3)

64,3

Невозможно
—

31,6
1,6

63,5

(8)

16,7

17,8
U,4

(1)

26,7

№ (3)

Невозможно
Невозможно
53,4 19,9
Невозможно
Невозможно

(8)

ι

Проведенные исследования показали, что состав газовой фазы зави-
сит от того, какой гипофосфит синтезируется. В случае синтеза гипо-
фосфита кальция в газовой фазе содержится больше фосфина, чем во-
дорода. Газовая фаза во всех случаях содержит в 3 раза больше РН3,
чем Н2. Четкой зависимости изменения состава газовой фазы от времени
ие наблюдается.

При синтезе гипофосфита натрия содержание водорода примерно в
3 раза превосходит содержание РЫ3. Затем отношение Н2 к РН 3 умень-
шается, достигая в некоторых случаях к концу синтеза примерно 0,6. Для
синтеза гипофосфита кальция среднее значение величины отношения
Н2/РН3 составляет 0,3, а гипофосфита к фосфиту ~1,4; для синтеза
гипофосфита натрия из желтого фосфора и NaOH эти отношения равны
1,8 и 3,5, соответственно.

' Были выяснены возможные сочетания реакций, которые обеспечивают
образование как водорода, так и фосфина в вышеуказанных отношениях
и которые наиболее вероятны по термодинамическим соображениям [ре-
акции (1), (4), (3), (8) в табл. 2]. Возможные сочетания реакций в про-
цессе синтеза гипофосфитов приведены в табл. 3.

Данные табл. 3 показывают, что сочетание реакции (4) и (3) возмож-
но только при синтезе растворов гипофосфита натрия и невозможно при
синтезе гипофосфита кальция. На это же указывалось в работах8 2·1 1 2.
При синтезе гипофосфитов могут протекать параллельные реакции (1),
(4), (3) и (8) с образованием гипофосфита. Газовая фаза, кроме фос-

фина, содержит дифосфин, который вызывает самовоспламенение выде-
ляющихся газов на воздухе. Кроме того, в газовую фазу переходит неко-
торое количество элементарного фосфора.

VI. ГИПОФОСФИТЫ И ИХ КЛАССИФИКАЦИЯ

Имеющийся в литературе материал в основном посвящен исследова-
нию гипофосфитов щелочных металлов. Известны80 следующие гипофос-
фиты щелочных металлов: Li(O2PH2) ·Η2Ο, К(О 2РН 2), Na(O2PH2) ·Η2Ο,
и соли аммония (ΝΗ4) (О2РН2) и (ΝΗ3ΟΗ) (О2РН2). Все они хорошо
растворимы в воде. Однако надежных количественных данных по их
растворимости нет114, кроме растворимости натриевой соли в двух гли-
колях. При 25° Na(O2PH2) растворяется в количестве 33,01 г в 100 г
этиленгликоля и 9,70 г в 100 г пропиленгликоля. Теплоты растворения
солей натрия, аммония, кальция, бария определены Брайтом и Кер-
соном 113.

Для металлов 2-ой группы известны следующие гипофосфиты80

Mg(O2PH,) /6H2O, Ca(O2PH2)2, Sr(O 2PH 2) 2, Ва(О 2РН 2) 2 и Ва(О 2РН 2) 2-
•Н2О. Эти соли также весьма хорошо растворимы в воде, причем раство-

римость Са(О2РН2)2 и Ва(О 2РН 2) 2 при комнатной температуре равна
соответственно 17 г и 29 г на 100 г воды.
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Как правило, гипофос-
фиты других металлов по-
лучают взаимодействием
окиси или гидроокиси ме-
талла с фосфорноватис-
той кислотой. Во многих
случаях, когда имеется
возможность легкого вос-
становления металла,
вместо образования соли
идет реакция окисления-
восстановления. Такие
процессы протекают, на-
пример, при использова-
нии окислов меди и сереб-
ра. Однако иногда можно
получить соли типа гипо-
фосфита меди, применяя
охлаждение или быстрое
высаливание прибавлени-
ем спирта 114.

Физические свойства и
растворимость некоторых
гипофоофитов, найденные
нами в литературе, сведе-
ны в табл. 4.

Мянц и Матросов115

изучили ИК-спектры ги-
пофосфитов металлов и
сделали расчет различ-
ных колебательных моде-
лей. Соли были получены
реакцией обмена металла
с гипофосфитами бария и
калия. Высушивание их в
пистолете Фишера над
Р2О5 при 77° (при более
высокой температуре со-
ли разлагались) приводи-
ло лишь к частичной по-
тере кристаллизационной
воды. Исходные вещества
и состав полученных со-
лей приведены в табл. 5.

Исследованные соли,
несмотря иа большое раз-
нообразие металлов, име-
ют в основном сходные
спектры. Исследовались
ИК-спектры солей в твер-
дом состоянии (таблетка
КВг) в области 3000—
400 см~1 на приборе ИКС-
14; для хорошо раствори-
мых в воде солей были
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ТАБЛИЦА 5

Синтезированные и исследованные гипофосфиты

Исходные вещества

(NH4)2SO4 и Ва!Н2РО2)2

Li2SO4 и Ва(Н2РО2) а

Na2SO4 и Ва(Н 2РО 2) 2

MgSO4-7H2O и Ва(Н2РО2)2

ZnSO4-7H2O и Ва(Н2РО2)2

8
CdSO 4--g-H 2O и Ва(Н2РО2)2

T12SO4 и Ва(Н2РО2)2

Th(NO3)4 и КН г РО 2

Pb(NO3)2 и КН а РО 2

MnSO4-7H2O и Ва(Н2РО2)2

Fe2(SO4)3-9H2O и Ва(Н2РО2)2

NiSO4 и Ва(Н2РО2)3

СоСО3 и Н 3РО а

Состав полученной соли

NH 4 H 2 PO 2

LiH,,PO2-H2O

N a H 2 P O . r ^ - H 2 O

Mg(H2PO2)2-6H2O

Z n ( H 2 P O 2 ) 2 - 2 - H 2 O

Cd(H aPO 2) 2-2H 2O

T1H2PO2

Th(H2PO2)4-3H2O

Pb(H2PO2)2-H2O

Mn(H aPO2)2-3H2O

F e ( H 2 P O 2 ) 3 H 2 O

Ni(H2PO2)2-6H2O

Co(H 2 F0 2 ) 2 -2H 2 0

Состав соли после сушки

NH 4 H 2 PO 2

LiH 2PO 2

NaH2PO2

Mg(H2PO2)2-H2O

Ζη(Η 2 ΡΟ 2 ) 2 · -2-Η 2 Ο

Cd(H2PO2)2-H2O

T1H,PO2

Th(H ;PO2)4-3H2O

Pb(H,PO2),-H2O

Mn(H2P02).,-2H2O

Fe(H2PO2)3

Ni(H2PO2)2

Co(H2PO2)2-H2O

получены также спектры водных растворов. Для всех солей характерна
наличие двух полос колебаний связи Ρ—О (антисимметричных при
1200—1115 см~1 и симметричных (при 1060—1020 слг*); это указывает на
то, что структура аниона с выравненными РО-связями сохраняется во
всех случаях. Полосы в области 1150—1160, 1080 и 810 слг\ связанные
с изменением углов α и γ в тетраэдре фосфора, сохраняют свое положе-
ние для всех солей. Для солей, существующих -j виде кристаллогидратов,
интенсивные полосы в области 2500-—2300 см~- соответствуют частотам
кристаллизационной воды, вовлеченной в сильную водородную связь.

Спектры солей щелочных металлов сходны между собой и хорошо
описываются ионной моделью. Кроме того, они сходны со спектром тет-
раалкиламмониевой соли, построенной по ионному типу. Это позволяет
приписать им ионное строение.

В спектрах солей ряда металлов по сравнению со спектрами солей
щелочных металлов (спектрами аниона) наблюдаются изменения, зави-
сящие от природы металла: 1) в области 600—400 см~1 появляются но-
вые полосы; 2) частоты колебаний связи Ρ—О заметно смещаются в сто-
рону меньших значений. Эти изменения наводят на мысль об образова-
нии координационной связи Μ—О, причем сходство спектров всех солей
(включая соли щелочных металлов) указывает на то, что выравненность
РО-связей сохраняется во всех случаях.

В спектрах Mg(H2PO2)2, Са(Н 2РО 2) 2 и Т1Н2РО2 смещение частот ко-
лебаний Ρ—О незначительно, и это указывает на слабое взаимодействие
металла с атомами кислорода аниона. Эти соли имеют строение, близкое
к ионному. Для других солей с заметной долей ковалентности связи
предложена цепочная модель, в которой металл связан с одним из
атомов кислорода каждого аниона, образующих координационную сферу
металла.

Получен и детально изучен гипофосфит таллия ε. Авторы пришли к
заключению, что наиболее подходящим для приготовления больших
количеств чистой соли является следующий метод: раствор Т1ОН гото-
вится встряхиванием тонких пластинок металлического таллия с 80%-
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ным избытком воды и одновременным продуванием кислорода через
смесь. Образовавшуюся смесь затем отфильтровывают и насыщают
углекислым газом; после частичного испарения и охлаждения Т12СО3

осаждается и может быть перекристаллизован из воды. К кристаллам
карбоната таллия прибавляют фосфорноватистую кислоту. Полученный
раствор фильтруют и затем концентрируют под вакуумом. К остатку
раствора добавляют большой избыток и-пропилового спирта или изопро-
пилового спирта (3 л спирта на 100 мл насыщенного раствора соли),
полученную смесь охлаждают при 5° в течение одной недели. Образовав-
шиеся белые иглоподобные кристаллы промывают свежим изопропило-
вым спиртом. Затем продукт высушивают в вакуумном эксикаторе. Опре-
делена точка плавления Т1Н,РО2 (114°). Вблизи точки плавления обычно
наблюдается слабое разложение соли. При нагревании гипофосфит тал-
лия медленно чернеет. Для начала почернения необходимо 6—7 часов
нагревания при 95°. Высказано 8 предположение, что в этих условиях
Т1Н2РО2 медленно окисляется кислородом воздуха до фосфита таллия
Т1Н2РО3. Гипофосфит таллия чувствителен к свету: на солнечном свету
появляется такой же черный цвет, какой замечен при нагревании.

Существование комплекса Т1 3 + —Н 2 РО 2 сомнительно " 6 ; единствен-
ным доказательством его являются свойства лиганда Н 2 РО~, образующе-
го комплексы с другими металлами. Для образования комплекса Н2РО~
с Т1 3 + как реагентом, до стадии окисления предложен следующий ме-
ханизм:

Т13+ + Н,РО2 -?- (Т1Н3РО5)
3+

(Т1Н3РО2)
3+ + Н2О -* Т1+ + Н3РО3 +2Н+.

Разложение комплекса не простой процесс; он включает в себя прибав-
ление атома кислорода для образования Н 3 РО 3 , которое достигается пу-
тем замены одного Н, непосредственно соединенного с фосфором, на
ОН-группу воды.

Описаны 1 1 7 получение и свойства безводных Со(Н 2 РО 2 ) 2 , Ζη(Η 2ΡΟ 2)2,
F e ( H 2 P O 2 ) 2 , C u ( H 2 P O 2 ) 2 и N i ( H 2 P O 2 ) 2 . Первые два получены кристал-
лизацией из водных растворов. Соли F e ( H 2 P O 2 ) 2 , C u ( H 2 P O 2 ) 2 получены
осаждением из ацетонового раствора. Гипофосфит железа представляет
собой светло-голубой порошок, нерастворимый в воде. Гипофосфит меди
при комнатной температуре неустойчив и через несколько минут после
осаждения разлагается с образованием металлической меди.

Гипофосфит никеля имеет вид аморфного желтого порошка, получен
•обезвоживанием гексагидрата или осаждением из ацетонового раствора
•и обезвоживанием в присутствии Р 2 О 5

1 1 7 . Изучено поведение гипофосфи-
тов Со, Zn, Fe, Cu, Ni по отношению к безводному пиридину. В случае
гипофосфитов Со и Zn образуются хорошо кристаллизующиеся соеди-
нения С о ( Н 2 Р О 2 ) 2 Р у 2 и Z n ( H 2 P O 2 ) 2 P y 2 . При 20° они теряют пиридин,
превращаясь в соответствующие гипофосфиты.

Найдено, что в результате взаимодействия М 2 + , где М = С и , Со или
Ni, с Н 2 Р О 2 В ВОДНОМ растворе при 19±2°, ионной силе 3 (NaC104) и
величине рН 3,7—3,9 образуются малопрочные гипофосфитные комплек-
сы 118. Методом изомолярных серий установлен состав гипофосфитов Со
и Ni соотношением М 2 + : Н 2 РО1= 1 : 1. Вычислена константа равновесия
реакции М 2 + Н 2 Р О ; г ± М Н 2 Р О + (при М = Со), равная 0,82 ± 0,09 119.

Описано получение гипофосфита алюминия двумя способами 120. Один
из них сводится к нагреванию гидроокиси или раствора соли алюминия
с 50%-ным Н 3 Р О 2 при 80—90° в течение одного часа и медленному осаж-
дению А1(Н 2 РО 2 ) 3 . Второй способ связан с нагреванием соли алюминия
с гипофосфитом натрия; осаждение происходит еще медленнее, чем в пер
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вом случае. А1(Н2РО,)3 не растворяется в воде и Н3РО2. Он растворим
в теплом растворе едкого натра, разбавленной H2SO4, разбавленной и
концентрированной НС1. При нагревании гипофосфит алюминия разла-
гается, не плавясь, приблизительно при 220°, с -выделением фосфина РН 3

и образованием красновато-коричневого остатка. Не было найдено усло-
вий, в которых фосфорноватистая кислота могла бы восстановить сое-

.динения алюминия до металла.
Гипофосфиты скандия, иттрия и лантана R"(H2PO2)3 были получены

взаимодействием гидроокиси первых двух элементов и La2(CO3)3 с фос-
форноватистой кислотой т . Полученные гипофосфиты являются крис-
таллическими, они нерастворимы в воде и органических растворителях.
Вещества кристаллизуются в системе с низкой симметрией. Гипофосфит
скандия разлагается в вакууме при 350°, гипофосфит иттрия при 450° и
гипофосфит лантана при 300—350°. ИК-спектры гипофосфитов Sc, Y, La,
имеют острые максимумы. Спектры, снятые в диапазоне 3000—400 сж~*—
в основном спектры анионов. Влияние катионов на спектр главным обра-
зом проявляется в области 400—500 см~\

Синтезированы безводные гипофосфиты р.з.э. состава R(H 2 PO 2 ) 3 и
двойные гипофосфиты состава CeR(H2PO2)6, где R = Er, Tu, Yb, Lu l 2 2 · 1 2 3 .
Первые представляют собой кристаллические вещества с окраской, ха-
рактерной для ионов р.з.э., которая, однако, менее интенсивна, чем у
нитратов, хлоридов и других солей. Нагревание до 105—108° показыва-
ет, что они не содержат кристаллизационной воды. Гипофосфиты тяже-
лых редкоземельных элементов менее растворимы в воде, чем гипофос-
фиты легких р. з. э. Они склонны к образованию перенасыщенных раство-
ров, причем у легких р.з.э. эта склонность выражается наиболее резко.

Методом рентгеноструктурного анализа изучены m гипофосфиты лан-
тана La(H2PO2)3-H2O и европия Еи(Н 2РО 2) 3-Н 2О; показано, что хими-
ческие свойства этих соединений в растворах несколько различны.

Гипофосфит празеодима Рг(Н,РО 2) 3 кристаллизуется в форме зеле-
ных призм при нейтрализации 1%-ного раствора Н3РО2 окисью празео-
дима и упаривании раствора на водяной бане. Соль довольно трудно
растворима в воде.

Проведен химический анализ двойных гипофосфитов CeR(H2PO2)e,
где R = Er, Tu, Yb, Lu, и исследовано их термическое разложение123.
Установлено, что разложение происходит мгновенно в интервале темпе-
ратур 300—370°. В интервале температур 440—600° наблюдается окис-
ление продуктов разложения.

VII. ГИПОФОСФИТНЫЕ КОМПЛЕКСЫ МЕТАЛЛОВ

Спектрофотометрическим методом на примере празеодима, неодима
и эрбия подтверждено существование в растворах катионных комплек-
сов ионов редкоземельных элементов с гипофосфит-ионом МеН 2РО|+.
Рассчитаны константы равновесия и образования указанных комплек-
сов'25. Изучение взаимодействия ионов р.з.э. с фосфорноватистой кис-
лотой было проведено с использованием регистрирующего спектрофото-
метра СФ-10. Запись спектров поглощения растворов комплексов Рг3 +

в области 420—505 нм, Nd3+ в области 490—615 нм, Ег3+ в области
500—560 нм производили через 10 минут после сливания растворов (про-
межуток времени, достаточный для установления равновесия). Спектры
поглощения растворов комплексов редкоземельных элементов в течение
последующих 2—3 часов не изменяются, однако при соотношении
Н 3РО 2 : Ме3+ больше 8 или при рН = 3,0 выпадает осадок.
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Оптические .плотности растворов гипофосфитных комплексов в мак-
симумах полос поглощения ионов Рг3 + и Nd3+ уменьшаются, а в случае
Ег3+ увеличиваются по сравнению с оптической плотностью в растворах
их хлоридов Дш.· Максимумы полос поглощения Рг3 + и Nd3+ смещаются
•в стороны длинных или коротких волн. Расщепленная полоса эрбия име-
ет два максимума при 522,5 и 519 нм. При изучении влияния рН на ве-
личину AD в максимуме полос поглощения было найдено, что комплексо-
образование ионов редкоземельных элементов с Н2РО~ начинается при
рН>1, достигает максимума при рН = 2,5 в случае празеодима и неодима
и 1,6 в случае эрбия. Если рН растворов комплексов Рг и Nd больше 6,5,
а <в случае Ег больше 3, из растворов постепенно выделяются осадки,
причем тем скорее, чем выше значение рН и соотношение Н2РО~ : м 3 +

в нем.
Состав комплексов был изучен125 спектрофотометрически с использо-

ванием метода изомолярных серий и ограниченного логарифмического
метода. Опыты производили при рН 2,9—3,4, при которых разность опти-
ческой плотности растворов комплексов достигает максимальной вели-
чины. Установлено образование сильно диссоциированных комплексов
с вероятным соотношением компонентов Н 3 РС£:М 3 + =1 : 1.

Реакцию взаимодействия между ионами р. з. э. и фосфорноватисток
кислотой можно представить следующим уравнением:

мз+ + Н3РО2 -г МН2РО|+ + н+.

Полученные значения lg/Сравн. и lg/C06P. представлены в табл. 6, из кото-
рой видно, что значения lg-Кравн. и lg/C06P. комплексов празеодима, нео-
дима и эрбия незначительно отличаются друг от друга.

ТАБЛИЦА 6

Значение логарифмов констант равновесия и
образования комплексов редкоземельных элементов

с Н 3 РО 2

Комплекс

РгН 2 РО 2 +

N d H 2 P O f

ErH2PO2

2

+

Кравн.

0,23+0,03
0,00+0,04
0,37+0,03

^образ.

1,33+0,03

1,10+0,04

1,47±0,03

Изучена кинетика образования моногипофосфитного комплекса же-
леза 126 и хрома127. Подтверждено существование комплекса СгН2РО£+

и Fe(H 2 PO 2 ) | + , определены их константы устойчивости. Описано полу-
чение гипофосфита олова (IV) 128. Насыщенный раствор SnO в Н3РО2

насыщался кислородом до получения бесцветных кристаллов
Sn(H2PO2)4, который является первым твердым соединением, содержа-
щим 4-валентное олово и анион с высоким потенциалом восстановления.
Изучена возможность комплексообразования циркония и гафния с гипо-
фосфит-ионом. Методом ионного обмена доказано 129 образование анион-
ных комплексов состава [Zr(H,PO,)6]

2- и [Ш(Н2РО2)6]
2- при растворении

гидратированных окислов Zr4+ и Hf4+ в водном растворе Н3РО2 (наивыс-
шая концентрация 0,3 N).

Интересно образование нерастворимых соединений типа
M[Zr(H2PO2)e] и MtHf (Н2РО2)6] при добавлении солей двухвалентных



Фосфорноватистая кислота и ее соли 2165

металлов; M = Mg, Ca, Mn, Co, Ni, Fe, Zn, Cd. Доказано129, что в этих
•нерастворимых гипофосфитоцирконатах и гипофосфитогафнатах двух-
валентных металлов вода отсутствует, разлагаются они при 210—300°.
Все они, кроме кальциевой соли, изоморфны. По данным ИК-спектров,
в М[2г(Н2РО2)б] и М[Ш (Н2РО2)6] обнаруживаются как концевые, так и
мостиковые группы Н2РО2. Следовательно, гипофосфитоцирконаты и
-гафнаты представляют собой поликонденсированные комплексные сое-
динения. Найдено130, что Н3РО2 образуют с Мо6+ комплекс, обладающий
значительной оптической плотностью при 400 нм при любой концентра-
ции кислоты, в то время как комплекс с POJ" не образуется при кислот-
ности раствора ~1,6ЛГ. На этой основе разработан спектрофотометриче-
ский метод определения гипофосфита в присутствии фосфатов.

Гипофосфиты, так же, как и фосфиты, образуют продукты присоеди-
нения131 с галогенводородами НС1, HBr, HI. Если фосфаты могут при-
соединять три моля галогеноводорода, то гипофосфиты и фосфиты при-
соединяют два моля галогеноводорода. Типичным соединением такого
типа является Cd(H2PO2)2-2HCl. В этих соединениях галогеноводород
•связан с молекулой, вероятно, подобно воде в гидратах, т. е. координи-
рован с ионом металла.

Описаны132 интересные комплексные соединения двухвалентного гер-
мания— Ge(H2PO2)2-GeCl2 и 3Ge(H2PO2)2-GeBr2. Первая соль (темпе-
ратура .плавления 124°) была получена нагреванием активированного
оксида германия, полученного растворением нормального оксида в ще-
лочи и переосаждением его с кислотой в течение 30 минут в 6N НС1 и
50%-ной Н3РО2. Через 12 часов выдерживания отделяли кристаллы,
промывали разбавленной Н3РО2 и абсолютным спиртом, высушивали
в вакууме лри комнатной температуре. Вторая соль (температура плав-
ления 129°) была получена с помощью GeO, 35% HBr и 50% Н3РО2.
При медленном охлаждении отделялись кристаллы. Полученные соеди-
нения весьма устойчивы на воздухе, но гидролизуются водой, образуя
гидроксид германия.

Если нагревать двуокись германия с Н3РО2, то она, растворяясь с
образованием желто-зеленого раствора, восстанавливается. Такое пове-
дение противоположно поведению SnO2, который, хотя и растворим в
Н3РО2, но не восстанавливается до 2-валентного состояния в отсутствие
НС1132. Эверест указывает133 на существование таких двойных солей:
Sn(H2PO2)4-SnCl4 и Sn(H2PO2)2-SnCl2.

VIII. ВОССТАНОВИТЕЛЬНЫЕ СВОЙСТВА ГИПОФОСФИТ-ИОНА

Много работы посвящено изучению восстановительных свойств ги-
пофосфит-иона. В интервале 210—250° изучен 132 пиролиз NaH2PO2 в при-
сутствии LiH (молекулярное отношение 1 : 22) или LiOH (молекулярное
отношение 1:5). Предложена возможность протекания следующих ре-
акций:

NaH2PO2 4 LiH — NaHPO, + Li + Н2 (15)

NaH2PO2 +2LiH -> NaPO2 +2Li +2H 2 (16)

6NaH2PO2 +3LiH -* 2Na3FO4 -f P4H4O -f3LiOH + H2 (17)

г РО г +4LiH _, PLi3 + NaOH + LiOH + 3 H 2 (18)

NaH2PO2 + LiOH -» NaLiHPO3 + H2 (19)

NaPO2 -1- LiOH -» NaLiHPO3 (20)

NaH2PO2 + 3LiOH -> NaLiH2PO4 + 2 H 2 (21)

2NaH2FO4 -, PH3 + Na2HPO4. (22)



2166 Η. В. Романова и Η. В. Демиденко

Соединение Р4Н4О, полученное в реакции (17), представляет собой смесь
полимерных (продуктов (красного цвета). Р4Н4О нерастворим в воде,
кислотах, органических растворителях. Показано 1и, что Р4Н4О хорошо
описывается формулой (Р4Н4О)„. На основе ИК-спектров обсуждено
возможное строение (Р4Н4О)„ и приведены возможные структурные фор-
мулы, содержащие связь Ρ—Р. Высказано предположение о возможно-
сти образования связей Ρ—О—Ρ или — Р = О, НО—Ρ—. Отмечено, что
при взаимодействии NaH2PO2 с LiOH образование Р4Н4О не наблюдается.

Изучено135 восстановление K3[Co(CN)6] фосфорноватистой кислотой
в 1 Μ растворе НС1 в атмосфере азота, в результате которого получен
Co(CN)2-2H2O. Предположение о протекании реакции восстановления
через образование промежуточных комплексов [Co(CN)5-OP(O)H2]

4~
или [(CN)5CoOPH2OCo(CN)5]n подтверждено данными ИК-спектра,
в котором присутствуют полосы поглощения, характерные для групп
Р—О и Ρ—Η.

Сильная восстановительная способность гипофосфит-иона лежит в
основе ряда методов его определения. Так, разработан метод135 вана-
датометрического потенциометрического титрования гипофосфита и фос-
фита в их смесях, основанный на окислении ванадатом Н2РО^ в при-
сутствии соли серебра до РОГ" (через НРОГ) в отсутствие серебра фос-
фит не окисляется до РОГ·

Описан 137 метод объемного определения гилофосфита иодом. Метод
заключается в окислении гипофосфита до фосфита:

Н3РО2 + I, + Н2О -* Н3РО3 +2ΗΙ.

При некоторых условиях образующийся фосфит может окисляться иоди-
дом до фосфата:

НаРО3+12 + Н2О -» Н3РО4 + 2ΗΙ.

В сильно кислой среде в основном протекает первая реакция.
Разработана методика138 определения гипофосфит-иона в кислых

растворах химического никелирования, основанная на взвешивании ни-
кель-фосфорного покрытия, полученного в результате восстановления
Ni2+ гипофосфитом. Определению не мешают фосфит (до 50 г/л) и вос-
становители.

Установлено 139, что в боратной буферной среде при нагревании 1ΟΪ
окисляет НгРОГ, НРО3~, SeOs", TeO3~. причем во всех случаях образу-
ется Ю 3 . Избыток ΙΟΙ можно оттитровать иодометрически в буферной
среде, и таким образом найти содержание любого из указанных веществ.
Предложен метод фотометрического определения140·141 Н 2РО 2, осно-
ванный на уменьшении оптической плотности растворов при 530 нм^ вы-
званном восстановлением Fe3 + до Fe2 + с помощью гипофосфит-иона.

Гипофосфит натрия можно определять142 после предварительного
удаления железа из раствора окислением NaH2PO2 раствором соли Fe3+

с последующим титрованием образовавшегося Fe2 + раствором сульфата
церия. Изучена143 кинетика и механизм реакции окисления гипофосфита
церием (IV) в растворе серной кислоты. Описаны условия окисления ги-
пофосфит-иона различными окислителями: азотной кислотой 144, перман-
ганатом 1 4 5 · 1 4 6 , солью церия (IV) 147' 14\ раствором бихромата в присут-
ствии ионов серебра 149, бромид-броматом 15°, солью 3-валентного желе-
за 1М, персульфатом (катализируемого двухвалентной медью, в растворе
хлорной кислоты) 152.

Интерес представляют органические производные фосфорноватистой
кислоты — фосфинистые и дизамещенные фосфиновые кислоты. Один:
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или два атома водорода, присоединенные к фосфору в фосфорноватнс-
той кислоте, могут быть замещены алкильными или арильными радика-
лами. При замещении одного атома водорода получающиеся соединения
носят название алкилфосфинистых или фосфинистых кислот RHPOOH.
Моноэфиры этой кислоты мало известны, но получен ряд диэфиров. Кис-
лоты, образующиеся в результате замещения двух атомов водорода при
фосфоре фосфорноватистой кислоты, носят название диалкилфосфино-
вых (диарилфосфиновых) или «вторичных» фосфшювых кислот.

Известны свободные кислоты R2P(O) (ОН) и соответствующие слож-
ные эфиры R2P(O)(OR).

IX. ПРИМЕНЕНИЕ ГИПОФОСФИТОВ

Наиболее важным с экономической точки зрения является примене-
ние гипофосфитов для поверхностной обработки металлов153. Этот про-
грессивный метод был .предложен в США после второй мировой войны т ,
позже был расширен, теоретически изучен и постоянно усовершенству-
ется 155.

Исследования показали1Г·6-159, что металлические пластинки можно
химическим путем покрыть никелем, кобальтом или их сплавами при
помощи гипофосфит-иона, причем получаемый тонкий слой покрытия
(менее 0,025 мм) весьма тверд, не порист и прочно связан с металлом.
Толщину слоя выделяемого металла можно регулировать. Большим
преимуществом процесса является возможность обрабатывать и неметал-
лические материалы — керамику, стекло, пластик. В технике полупро-
водников можно наносить металлические контакты непосредственно на
керамику или на другие материалы при производстве трансзисторов i5i).

Гипофосфиты применяют также для покрытия изделий гальваниче-
ским способом 160· ш .

Восстановительные свойства гипофосфитов позволили применять их
в производстве взрывчатых веществ 16°. Например, смесь равных коли-
честв гипофосфита бария и хлората калия, предварительно высушенного
при 100°, быстро загорается на открытом воздухе со слабым взрывом.
Будучи помещена в закрытый сосуд, эта смесь детонирует. От электри-
ческой искры смесь легко загорается и очень чувствительна к ударам
и трению.

Благодаря применению гипофосфитов в фармацевтической практике
в конце XIX века была весьма подробно изучена их токсичность163-107.
Доказательств их токсичности для млекопитающих не было получено;
в организме млекопитающих они остаются в неизменном виде и быстро
выводятся из организма.

В последнее время гипофосфиты все чаще находят применение β ана-
литической химии. Так, с применением гипофосфита разработана мето-
дика i 6 8 титриметрического определения железа в присутствии ионов меди.
в качестве катализатора.
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